Утвержден
приказом Министерства образования
и науки Российской Федерации
от «23» дек. 2010 г. № 1090

ФЕДЕРАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ
ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

по направлению подготовки

141200 Холодильная, криогенная техника
и системы жизнеобеспечения

(квалификация (степень) «магистр»)

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящий федеральный государственный образовательный
стандарт высшего профессионального образования (ФГОС ВПО)
представляет собой совокупность требований, обязательных при
реализации основных образовательных программ магистратуры по
направлению подготовки 141200 Холодильная, криогенная техника и
системы жизнеобеспечения образовательными учреждениями высшего
профессионального образования (высшими учебными заведениями,
вузами) на территории Российской Федерации, имеющими
государственную аккредитацию.

1.2. Право на реализацию основных образовательных программ
высшее учебное заведение имеет только при наличии соответствующей лицензии, выданной уполномоченным федеральным органом исполнительной власти.

II. ИСПОЛЗУЕМЫЕ СОКРАЩЕНИЯ

В настоящем стандарте используются следующие сокращения:

ВПО — высшее профессиональное образование;
ООП — основная образовательная программа;
ОК — общекультурные компетенции;
ПК — профессиональные компетенции;
УЦ ООП — учебный цикл основной образовательной программы;
ФГОС ВПО — федеральный государственный образовательный стандарт высшего профессионального образования.

III. ХАРАКТЕРИСТИКА НАПРАВЛЕНИЯ ПОДГОТОВКИ

Нормативный срок, общая трудоемкость освоения ООП (в зачетных единицах)* и соответствующая квалификация (степень) приведены в таблице 1.

Таблица 1

Сроки, трудоемкость освоения ООП и квалификация (степень) выпускников

<table>
<thead>
<tr>
<th>Наименование ООП</th>
<th>Квалификация (степень)</th>
<th>Нормативный срок освоения ООП (для очной формы обучения), включая каникулы, предоставляемые после прохождения итоговой государственной аттестации</th>
<th>Трудоемкость (в зачетных единицах)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ООП магистратуры</td>
<td>68</td>
<td>магистр</td>
<td>2 года</td>
</tr>
</tbody>
</table>

* Одна зачетная единица соответствует 36 академическим часам.

** Трудоемкость ООП по очной форме обучения за учебный год равна 60 зачетным единицам.
Сроки освоения ООП магистратуры по очно-заочной (вечерней) и заочной формам обучения, а также в случае сочетания различных форм обучения могут увеличиваться на пять месяцев относительно нормативного срока, указанного в таблице 1, на основании решения ученого совета высшего учебного заведения.

Профильная направленность ООП магистратуры определяется высшим учебным заведением, реализующим образовательную программу по соответствующему направлению подготовки.

IV. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ МАГИСТРОВ

4.1. Область профессиональной деятельности магистров включает: теоретическое, компьютерное и экспериментальное исследование научно-технических проблем и решение задач в области холодильной, криогенной техники и систем жизнеобеспечения — расчёта, конструирования, изготовления и эксплуатации с учётом прочности, устойчивости, рациональной оптимизации, долговечности, ресурса, живучести, надежности и безопасности машин, установок, агрегатов, оборудования, приборов и аппаратуры и их элементов.

4.2. Объектами профессиональной деятельности магистров являются: физико-механические процессы и явления в области низких и сверхнизких температур, машины, аппараты, установки, агрегаты, оборудование, приборы и аппаратура и многие другие объекты холодильной и криогенной техники, систем жизнеобеспечения.

4.3. Магистр по направлению подготовки 141200 Холодильная, криогенная техника и системы жизнеобеспечения готовится к следующим видам профессиональной деятельности:

научно-исследовательская, включая расчетно-экспериментальную,
научно-педагогическая,
производственно-технологическая,
проектно-конструкторская,
организационно-управленческая,
научно-инновационная,
консультационно-экспертная.

Конкретные виды профессиональной деятельности, к которым в основном готовится магистр, определяются высшим учебным заведением совместно с заинтересованными участниками образовательного процесса.

4.4. Магистр по направлению подготовки 141200 Холодильная, криогенная техника и системы жизнеобеспечения должен быть подготовлен к решению следующих профессиональных задач в соответствии с профильной направленностью ООП магистратуры и видами профессиональной деятельности:

научно-исследовательская, включая расчетно-экспериментальную:
сбор и обработка научно-технической информации, изучение передового отечественного и зарубежного опыта по избранной проблеме в области холодильной, криогенной техники и систем жизнеобеспечения; анализ поставленной задачи в области холодильной, криогенной техники и систем жизнеобеспечения на основе подбора и изучения литературных источников, содержательная постановка задач в данном направлении;
разработка физико-механических, математических и компьютерных моделей, предназначенных для выполнения теоретических и расчетно-экспериментальных исследований и решения научно-технических задач в области холодильной, криогенной техники и систем жизнеобеспечения;
подготовка и проведение расчетно-экспериментальных исследований в области холодильной, криогенной техники и систем жизнеобеспечения на основе классических и технических теорий и методов, достижений техники и технологий, в первую очередь, с помощью экспериментального оборудования для проведения тепловых и механических испытаний,
высокопроизводительных вычислительных систем и широко используемых в промышленности наукоемких компьютерных технологий;
определение направлений перспективных исследований с учетом мировых тенденций развития науки, техники и технологий; выполнение научно-технических работ в интересах научных организаций, предприятий промышленности, бизнес-структур;
составление описаний выполненных исследований и разрабатываемых проектов, обработка, анализ и интерпретация результатов исследований; подготовка данных для составления отчетов и презентаций, написания докладов, статей и другой научно-технической документации;

научно-педагогическая деятельность:
участие в довузовской подготовке и профориентационной работе, в образовательных учреждениях Российской Федерации, направленной на привлечение наиболее подготовленных выпускников школ и других средних учебных заведений к получению высшего образования в области холодильной, криогенной техники и систем жизнеобеспечения;
участие в подготовке и проведении практических занятий, семинаров, лабораторных занятий, вычислительных практикумов в качестве учебно-вспомогательного персонала;

производственно-технологическая деятельность:
проведение расчетно-экспериментальных исследований по анализу характеристик конкретных объектов с целью оптимизации технологических процессов;
участие во внедрении технологических процессов наукоемкого производства, контроля качества материалов, элементов и узлов низкотемпературных машин, установок и систем различного назначения;

проектно-конструкторская деятельность:
проектирование машин и установок на основе математического и компьютерного моделирования с целью обеспечения их максимальной
производительности, долговечности и безопасности, обеспечения надежности узлов и деталей машин и аппаратов, оптимизация проектных решений;

проектирование деталей и узлов с использованием программных систем компьютерного проектирования на основе эффективного сочетания передовых технологий и выполнения многовариантных расчетов;

участие в работах по технико-экономическим обоснованиям проектируемых низкотемпературных машин, аппаратов и установок;

участие в работах по составлению отдельных видов технической документации на проекты, их элементы и сборочные единицы;

организационно-управленческая деятельность:

организация работы, направленной на формирование творческого характера деятельности небольших коллективов, работающих в областях научно-исследовательской и проектно-конструкторской деятельности;

участие в работах по поиску оптимальных решений при создании отдельных видов продукции с учетом требований эффективной работы, долговечности, безопасности жизнедеятельности, качества, стоимости, сроков исполнения и конкурентоспособности;

разработка планов на отдельные виды работ и контроль их выполнения;

научно-инновационная деятельность:

использование результатов научно-технических и проектно-конструкторских разработок в реальных секторах экономики;

участие в управлении проектами, связанными с внедрением наукоемких инноваций;

консультационно-экспертная деятельность:

консультации расчетчиков, конструкторов, технологов и других работников промышленных и научно-производственных фирм по современным достижениям холодильной, криогенной техники и систем

фГос-03
жизнеобеспечения, по вопросам использования наукоемких компьютерных технологий;
проведение научно-технических экспертиз расчетно-экспериментальных работ в области холодильной, криогенной техники и систем жизнеобеспечения, выполненных в сторонних организациях.

V. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ МАГИСТРАТУРЫ

5.1. Выпускник должен обладать следующими общекультурными компетенциями (ОК):
готовностью и способностью совершенствовать и развивать свой интеллектуальный и общекультурный уровень; владением культурой мышления, наличием способности к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения (ОК-1);
самостоятельным овладением новыми методами исследования в условиях изменения научного и научно-производственного профиля своей профессиональной деятельности; стремлением к саморазвитию, повышению своей квалификации и компетенций; критической оценкой своих достоинств и недостатков (ОК-2);
свободным использованием русского и иностранного языков, как средствами делового общения, переписки и документооборота; подготовкой презентаций, способностью делать доклады, писать статьи и отчеты о научно-исследовательских работах в том числе и на иностранном языке (ОК-3);
готовностью и способностью использовать на практике умения и навыки в организации исследовательских и проектных работ, в управлении коллективом; использованием нормативных правовых документов в своей деятельности (ОК-4);
готовностью и способностью самостоятельно приобретать с помощью информационных и телекоммуникационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (ОК-5);

умением логически верно, аргументировано и ясно строить устную и письменную речь; готовностью к сотрудничеству с коллегами и к работе в коллективе, проявлению творческой инициативы, в том числе в ситуациях риска, способностью находить организационно-управленческие решения в нестандартных ситуациях и готовностью нести за них ответственность (ОК-6);

готовностью и способностью использовать основные положения и методы социальных, гуманитарных и экономических наук при решении социальных и профессиональных задач, способностью анализировать социально-значимые проблемы и процессы; осознавать социальную значимость своей будущей профессии, обладать высокой мотивацией к выполнению профессиональной деятельности (ОК-7);

уважительным и бережным отношением к историческому наследию и культурным традициям России, пониманием социальных и культурных различий и особенностей других стран; использованием в личной жизни и профессиональной деятельности этических и правовых норм, регулирующих межличностные отношения и отношение к обществу, окружающей среде, основных закономерностей и норм социального поведения, прав и свобод человека и гражданина (ОК-8);

владением основными знаниями и методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий (ОК-9);

владением культурой безопасности и риск-мышлением (ОК-10);
наличием мотивации и способностей для самостоятельного
повышения уровня культуры безопасности (ОК-11);
способностью осознавать, критически оценивать и анализировать
вклад своей предметной области в решении экологических проблем и
проблем безопасности (ОК-12);
способностью использовать полученные знания для
аргументированного обоснования своих решений с точки зрения
безопасности (ОК-13).

5.2. Выпускник должен обладать следующими профессиональными
компетенциями (ПК):
в области научно-исследовательской деятельности, включая
расчетно-экспериментальную:
готовностью и способностью выявлять сущность научно-
teхнических проблем, возникающих в ходе профессиональной
деятельности, и привлекать для их решения соответствующий физико-
математический аппарат, вычислительные методы и компьютерные
технологии (ПК-1);
готовностью и способностью применять физико-математический
аппарат, теоретические, расчетные и экспериментальные методы
исследований, методы математического и компьютерного моделирования в
процессе профессиональной деятельности (ПК-2);
готовностью и способностью критически анализировать современные
проблемы холодильной, криогенной техники и систем жизнеобеспечения с
учетом потребностей промышленности, современных достижений науки и
мировых тенденций развития техники и технологий, ставить задачи и
разрабатывать программу исследования, выбирать адекватные способы и
методы решения теоретических, прикладных и экспериментальных задач,
анализировать, интерпретировать, представлять и применять полученные
результаты (ПК-3);
готовностью и способностью самостоятельно осваивать и применять современные теории, физико-математические и вычислительные методы, новые системы компьютерной математики и системы компьютерного проектирования и компьютерного инжиниринга для эффективного решения профессиональных задач (ПК-4);

готовностью и способностью самостоятельно выполнять научные исследования в области холодильной, криогенной техники и систем жизнеобеспечения для различных отраслей промышленности, топливно-энергетического комплекса, транспорта и строительства; решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (ПК-5);

готовностью и способностью самостоятельно овладевать современными языками программирования и разрабатывать оригинальные пакеты прикладных программ и проводить с их помощью тепловые расчеты машин и аппаратов, а так же на динамику и прочность, устойчивость, надежность, для специализированных задач холодильной, криогенной техники и систем жизнеобеспечения (ПК-6);

готовностью и способностью овладевать новыми современными методами и средствами проведения экспериментальных теплофизических исследований, а так же по динамике и прочности, устойчивости, надежности, трению и износу низкотемпературных машин, установок и приборов; обрабатывать, анализировать и обобщать результаты экспериментов (ПК-7);

в области научно-педагогической деятельности:

готовностью и способностью принимать непосредственное участие в учебной и учебно-методической работе образовательных учреждений Российской Федерации по профилю направления, участвовать в разработке программ учебных дисциплин и курсов (ПК-8);
готовностью и способностью проводить учебные занятия, лабораторные работы, вычислительные практикумы, принимать участие в организации научно-исследовательской работы студентов младших курсов, быть способным преподавать в школах и среднетехнических учебных заведениях (ПК-9);

в области производственно-технологической деятельности:
готовностью и способностью разрабатывать и оптимизировать современные наукоемкие технологии в различных областях приложения холодильной, криогенной техники и систем жизнеобеспечения с учетом экономических и экологических требований (ПК-10);
способностью самостоятельно адаптировать и внедрять современные наукоемкие компьютерные технологии холодильной, криогенной техники и систем жизнеобеспечения с элементами мультидисциплинарного анализа для решения сложных научно-технических задач создания техники нового поколения низкотемпературных машин, установок, агрегатов, оборудования, приборов и аппаратуры (ПК-11);
в области проектно-конструкторской деятельности:
способностью формулировать технические задания и применять программные системы компьютерного проектирования в процессе конструирования деталей низкотемпературных машин и установок с учетом обеспечения их максимальной производительности, а так же прочности, долговечности, надежности и износостойкости, готовить необходимый комплект технической документации в соответствии с Единой системой конструкторской документации (ЕСКД) (ПК-12);
способностью проектировать низкотемпературные машины и установки с учетом требований обеспечения их максимальной производительности, а так же прочности, устойчивости, долговечности и безопасности, обеспечения надежности и износостойкости узлов и деталей машин (ПК-13);
готовностью и способностью разрабатывать технико-экономические обоснования проектируемых низкотемпературных машин и установок, составлять техническую документацию на проекты, их элементы и сборочные единицы (ПК-14);
в области организационно-управленческой деятельности:
овладением приемами и методами работы с персоналом, методами оценки качества и результативности труда, оценивать затраты и результаты деятельности научно-производственного коллектива (ПК-15);
sпособностью находить рациональные решения при создании конкурентоспособной продукции с учетом требований их максимальной производительности прочности, жесткости, устойчивости, долговечности, износостойкости, качества, стоимости, сроков исполнения и безопасности жизнедеятельности (ПК-16);
готовностью к постоянному совершенствованию профессиональной деятельности, принимаемых решений и разработок в направлении повышения безопасности (ПК-17);
владением полным комплексом правовых и нормативных актов в сфере безопасности, относящихся к виду и объекту профессиональной деятельности (ПК-18);
в области научно-инновационной деятельности:
готовностью и способностью применять инновационные подходы с целью развития, внедрения и коммерциализации новых наукоемких технологий (ПК-19);
sпособностью разрабатывать планы и программы организации инновационной деятельности научно-производственного коллектива, разрабатывать технико-экономическое обоснование инновационных разделов научно-технических проектов (ПК-20);
sпособностью разрабатывать и реализовывать проекты по интеграции вузовской, академической и отраслевой науки с целью
коммерциализации и внедрения инновационных разработок на
высокотехнологичных промышленных предприятиях, в научно-
исследовательских институтах (НИИ) и конструкторских бюро (КБ)
(ПК-21);
готовностью участвовать в организации и проведении
инновационного образовательного процесса (ПК-22);
в области консультационно-экспертной деятельности:
способностью консультировать инженеров-расчетчиков,
конструкторов, технологов и других работников промышленных и научно-
производственных фирм по современным достижениям холодильной,
криогенной техники и систем жизнеобеспечения, по вопросам внедрения
наукоемких компьютерных технологий (ПК-23);
готовностью и способностью проводить научно-технические
экспертизы расчетных и экспериментальных работ в области холодильной,
криогенной техники и систем жизнеобеспечения, выполненных в
сторонних организациях (ПК-24).

VI. ТРЕБОВАНИЯ К СТРУКТУРЕ ОСНОВНЫХ
ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ МАГИСТРАТУРЫ

6.1. ООП магистратуры предусматривают изучение следующих
учебных циклов (таблица 2):
общенаучный цикл;
профессиональный цикл;
и разделов:
практики и научно-исследовательская работа;
итоговая государственная аттестация.

6.2. Каждый учебный цикл имеет базовую (обязательную) часть и
вариативную (профильную), устанавливаемую вузом. Вариативная
(профильная) часть дает возможность расширения и (или) углубления
знаний, умений, навыков и компетенций, определяемых содержанием базовых (обязательных) дисциплин (модулей), позволяет обучающимся получить углубленные знания и навыки для успешной профессиональной деятельности и (или) обучения в аспирантуре.

Таблица 2

<table>
<thead>
<tr>
<th>Код УД ООП</th>
<th>Учебные циклы, разделы и проектируемые результаты их освоения</th>
<th>Трудоемкость (зачетные единицы)</th>
<th>Перечень дисциплин для разработки примерных программ, а так же учебников и учебных пособий</th>
<th>Коды формируемых компетенций</th>
</tr>
</thead>
<tbody>
<tr>
<td>М.1</td>
<td>Общенаучный цикл</td>
<td>22-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Базовая часть</td>
<td></td>
<td>5-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>В результате изучения базовой части цикла студент должен:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>знать:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- терминологию научно-технического и делового иностранного языка;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- историю и основные философские проблемы науки и техники;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>уметь:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- применять знания иностранного языка при переписке, проведении рабочих переговоров и составлении деловых документов;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- применять основные положения философской теории познания в научной и практической деятельности;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>владеть:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- навыками общения на иностранном языке;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- владеть идеологией систем менеджмента качества, философскими, социальными и экономическими аспектами качества;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Вариативная часть</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(знания, умения, навыки и компетенции определяются</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ФГОС-03
<table>
<thead>
<tr>
<th>Курс</th>
<th>Профессиональный цикл</th>
<th>30-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>М.2</td>
<td>Базовая (общепрофессио-нальная) часть</td>
<td>8-12</td>
</tr>
</tbody>
</table>

В результате изучения базовой части цикла студент должен:

знать:
- основные современные проблемы, методы и уравнения термодинамики для процессов в машинах и установках холодильной, криогенной техники и систем жизнеобеспечения;
- основные перспективы и направления развития высокотемпературных сверхпроводящих систем, водородных и гелиевых установок, криобиологии, установок сжижения природного газа, получения сверхчистых редких газов, криоавиации, криоэлектроники, нано- и микро-кристаллических кристаллов, ядерно-магнитной резонансной томографии;
- основные методы, уравнения, зависимости, подходы, алгоритмы для тепловых, прочностных, динамических и иного видов расчётов, используемых при проектировании машин, аппаратов и установок холодильной, криогенной техники и систем жизнеобеспечения;
- основные методы и алгоритмы вычислительной газо-гидродинамики и тепломашино-механики;
- основные программные системы компьютерного инжиниринга;

уметь:
- рационально использовать аналитические методы термодинамического анализа

Специальные главы термодинамики низкотемпературных систем	ПК-19-22
Перспективы и направления развития и применения низкотемпературных систем и установок	ПК-19-22
Расчёт и проектирование машин, аппаратов и установок холодильной, криогенной техники и систем жизнеобеспечения; Вычислительная газо-гидродинамика, тепломашино-механика, компьютерный инжиниринг	ПК-19-22
Продолжение цикла М.2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>низкотемпературных установок для оценки эффективности проектированных и создаваемых машин, аппаратов и установок холодильной, криогенной техники и систем жизнеобеспечения;</td>
<td></td>
</tr>
<tr>
<td>- решать задачи холодильной, криогенной техники и систем жизнеобеспечения с применением программных систем компьютерного моделирования и компьютерного инжиниринга;</td>
<td></td>
</tr>
<tr>
<td>владеть:</td>
<td></td>
</tr>
<tr>
<td>- современными методами термодинамического, энтропийно-статистического анализа низкотемпературных систем;</td>
<td></td>
</tr>
<tr>
<td>- навыками построения теплофизических, математических и компьютерных моделей и решения задач холодильной, криогенной техники и систем жизнеобеспечения с применением программных систем компьютерного инжиниринга.</td>
<td></td>
</tr>
<tr>
<td>Вариативная часть</td>
<td></td>
</tr>
<tr>
<td>(знания, умения, навыки и компетенции определяются ООП вуза)</td>
<td></td>
</tr>
<tr>
<td>M.3 Практики и научно-исследовательская работа</td>
<td>45-54</td>
</tr>
<tr>
<td>(практические умения, навыки и компетенции определяются ООП вуза)</td>
<td>ПК-12-14</td>
</tr>
<tr>
<td>M.4 Итоговая государственная аттестация</td>
<td>10</td>
</tr>
<tr>
<td>Общая трудоемкость основной образовательной программы</td>
<td>120</td>
</tr>
</tbody>
</table>

1Трудоемкость циклов М.1, М.2 и раздела М.3 включает все виды текущей и промежуточной аттестаций.
VII. ТРЕБОВАНИЯ К УСЛОВИЯМ РЕАЛИЗАЦИИ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ МАГИСТРАТУРЫ

7.1. Образовательные учреждения самостоятельно разрабатывают и утверждают ООП магистратуры, которая включает в себя учебный план, рабочие программы учебных курсов, предметов, дисциплин (модулей) и другие материалы, обеспечивающие воспитание и качество подготовки обучающихся, а также программы практик и научно-исследовательской работы, итоговой государственной аттестации, календарный учебный график и методические материалы, обеспечивающие реализацию соответствующей образовательной технологии.

Высшие учебные заведения обязаны ежегодно обновлять ООП с учетом развития науки, культуры, экономики, техники, технологий и социальной сферы.

7.2. При разработке ООП магистратуры должны быть определены возможности вуза в развитии общекультурных компетенций выпускников (компетенций социального взаимодействия, самоорганизации и самоуправления, системно-деятельностного характера). Вуз обязан сформировать социокультурную среду, создать условия, необходимые для всестороннего развития личности.

7.3. Реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий (семинаров в диалоговом режиме, дискуссий, компьютерных симуляций, деловых и ролевых игр, разбор конкретных ситуаций, психологических и иных тренингов, групповых дискуссий, результатов работы студенческих исследовательских групп, вузовских и межвузовских телеконференций) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.
Одной из основных активных форм обучения профессиональным компетенциям, связанным с ведением того вида (видов) деятельности, к которым готовится магистр (научно-исследовательская, включая расчетно-экспериментальную, научно-педагогическая, производственно-технологическая, проектно-конструкторская, организационно-управленческая, научно-инновационная, консультационно-экспертная), для ООП магистратуры является семинар, продолжающийся на регулярной основе не менее двух семестров, к работе которого привлекаются ведущие исследователи и специалисты-практики, и являющийся основой корректировки индивидуальных учебных планов магистров.

В рамках учебных курсов должны быть предусмотрены встречи с представителями российских и зарубежных компаний, государственных и общественных организаций, мастер-классы экспертов и специалистов.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью программы, особенностю контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 40 процентов аудиторных занятий. Занятия лекционного типа для соответствующих групп обучающихся не могут составлять более 20 процентов аудиторных занятий.

7.4. В программы базовых дисциплин профессионального цикла должны быть включены задания, способствующие развитию компетенций профессиональной деятельности к которой готовится выпускник, в объеме, позволяющем сформировать соответствующие общекультурные и профессиональные компетенции.

7.5. ООП магистратуры высшего учебного заведения должна содержать дисциплины по выбору обучающихся в объеме не менее 30 процентов вариативной части обучения. Порядок формирования дисциплин по выбору обучающихся устанавливает ученый совет вуза.
7.6. Максимальный объем учебной нагрузки обучающихся не может составлять более 54 академических часов в неделю, включая все виды аудиторной и внеаудиторной (самостоятельной) учебной работы по освоению ООП и факультативных дисциплин, устанавливаемых вузом дополнительно к ООП и являющихся необязательными для изучения обучающимися.

Объем факультативных дисциплин, не включаемых в 120 зачетных единиц и не обязательных для изучения обучающимися, определяется вузом самостоятельно.

7.7. Максимальный объем аудиторных учебных занятий в неделю при освоении ООП в очной форме обучения составляет 24 академических часа.

7.8. В случае реализации ООП магистратуры в иных формах обучения максимальный объем аудиторных занятий устанавливается в соответствии с Типовым положением об образовательном учреждении высшего профессионального образования (высшем учебном заведении), утвержденным постановлением Правительства Российской Федерации от 14 февраля 2008 г. № 71 (Собрание законодательства Российской Федерации, 2008, № 8, ст. 731).

7.9. Общий объем каникулярного времени в учебном году должен составлять 7-10 недель, в том числе не менее двух недель в зимний период.

В высших учебных заведениях, в которых предусмотрена военная и (или) правоохранительная служба, продолжительность каникулярного времени обучающихся определяется в соответствии с нормативными правовыми актами, регламентирующими порядок прохождения службы\(^1\).

\(^1\) Статья 30 Положения о порядке прохождения военной службы, утвержденного Указом Президента Российской Федерации от 16 сентября 1999 г. № 1237 «Вопросы прохождения военной службы» (Собрание законодательства Российской Федерации, 1999, № 38, ст. 4534)
7.10. Вуз обязан обеспечить обучающимся реальную возможность участвовать в формировании своей программы обучения, включая возможную разработку индивидуальных образовательных программ.

7.11. Вуз обязан ознакомить обучающихся с их правами и обязанностями при формировании индивидуальной образовательной программы, разъяснить, что избранные обучающимися дисциплины (модули) становятся для них обязательными, а их суммарная трудоемкость не должна быть меньше, чем это предусмотрено учебным планом.

7.12. В вузе должно быть предусмотрено применение инновационных технологий обучения, развивающих навыки командной работы, межличностной коммуникации, принятия решений, лидерские качества (чтение интерактивных лекций, проведение групповых дискуссий и проектов, анализ деловых ситуаций и имитационных моделей, проведение ролевых игр, тренингов и других технологий), преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ вуза, учитывающих региональную и профессиональную специфику при условии реализации содержания образования и формировании компетенций выпускника, определяемых настоящим ФГОС ВПО.

7.13. ООП магистратуры программа вуза должна включать лабораторные практикумы и (или) практические занятия по дисциплинам (модулям) базовой части, формирующим у обучающихся умения и навыки в области расчета и проектирования машин, аппаратов и установок холодильной, криогенной техники и систем жизнеобеспечения, вычислительной газогидродинамики, тепломассообмена и компьютерного инжиниринга, а также по дисциплинам (модулям) вариативной части, рабочие программы которых предусматривают цели формирования у обучающихся соответствующих умений и навыков.

ФГОС-03
7.14. Обучающиеся имеют следующие права и обязанности:

- право в пределах объема учебного времени, отведенного на освоение дисциплин (модулей) по выбору, предусмотренных ООП, выбирать конкретные дисциплины (модули);
- право при формировании своей индивидуальной образовательной программы получить консультацию в вузе по выбору дисциплин (модулей) и их влиянию на будущую профессиональную подготовку;
- право при переводе из другого высшего учебного заведения при наличии соответствующих документов на перезачет освоенных ранее дисциплин (модулей) на основании аттестации;
- обязанность выполнять в установленные сроки все задания, предусмотренные ООП вуза.

7.15. Практика является обязательным разделом ООП магистратуры. Она представляет собой вид учебных занятий, непосредственно ориентированных на профессионально-практическую подготовку обучающихся.

Конкретные виды практик определяются ООП вуза. Цели и задачи, программы и формы отчетности определяются вузом по каждому виду практики.

Практики могут проводиться в сторонних организациях или на кафедрах и в лабораториях вуза, обладающих необходимым кадровым и научно-техническим потенциалом.

7.16. Научно-исследовательская работа обучающихся является обязательным разделом ООП магистратуры и направлена на формирование общекультурных и профессиональных компетенций в соответствии с требованиями настоящего ФГОС ВПО и ООП вуза. Вузами могут предусматриваться следующие виды и этапы выполнения и контроля научно-исследовательской работы обучающихся:
планирование научно-исследовательской работы, включающее ознакомление с тематикой исследовательских работ в данной области и выбор темы исследования, написание реферата по избранной теме; проведение научно-исследовательской работы; корректировка плана проведения научно-исследовательской работы; составление отчета о научно-исследовательской работе; доклад на семинаре, подготовка научной публикации или публичная защита выполненной работы.

Основной формой планирования и корректировки индивидуальных планов научно-исследовательской работы обучаемых является обоснование темы, обсуждение плана и промежуточных результатов исследования в рамках научно-исследовательского семинара.

В процессе выполнения научно-исследовательской работы и в ходе защиты ее результатов должно проводиться широкое обсуждение в учебных структурах вуза с привлечением работодателей и ведущих исследователей, позволяющее оценить уровень приобретенных знаний, умений и сформированных компетенций обучающихся. Необходимо также дать оценку компетенций, связанных с формированием профессионального мировоззрения и определенного уровня культуры.

7.17. Реализация ООП магистратуры должна обеспечиваться научно-педагогическими кадрами, имеющими базовое образование, соответствующее профилю преподаваемой дисциплины, и ученую степень или опыт деятельности в соответствующей профессиональной сфере и систематически занимающимися научной и (или) научно-методической деятельностью.

К образовательному процессу по дисциплинам профессионального цикла должны быть привлечены не менее 20 процентов преподавателей из числа действующих руководителей и ведущих работников профильных организаций, предприятий и учреждений. Не менее 80 процентов
преподавателей (в приведенных к целочисленным значениям ставок), обеспечивающих учебный процесс по профессиональному циклу и научно-исследовательскому семинару, должны иметь российские или зарубежные ученые степени и ученые звания, при этом ученые степени доктора наук (в том числе степень, присваиваемую за рубежом, документы о присвоении которой прошли установленную процедуру признания и установления эквивалентности) или ученое звание профессора должны иметь не менее 15 процентов преподавателей.

При реализации ООП магистратуры, ориентированных на подготовку научных и научно-педагогических кадров, не менее 75 процентов преподавателей, обеспечивающих учебный процесс, должны иметь ученые степени кандидата, доктора наук (в том числе степень, присваиваемую за рубежом, документы о присвоении которой прошли установленную процедуру признания и установления эквивалентности) и ученые звания.

Общее руководство научным содержанием и ООП магистратуры должно осуществляться штатным научно-педагогическим работником вуза, имеющим ученую степень доктора наук или степень, присваиваемую за рубежом, документы о присвоении которой прошли установленную процедуру признания и установления эквивалентности, и (или) ученое звание профессора соответствующего профиля, стаж работы в образовательных учреждениях ВПО не менее трех лет.

Для штатного научно-педагогического работника вуза, работающего на полную ставку, допускается одновременное руководство не более чем двумя ООП магистратуры; для внутреннего штатного совместителя – не более одной ООП магистратуры.

Непосредственное руководство магистрами осуществляется руководителями, имеющими ученую степень и ученое звание. Допускается
одновременное руководство не более чем тремя магистрами.

Руководители ООП магистратуры должны регулярно вести самостоятельные исследовательские (творческие) проекты или участвовать в исследовательских (творческих) проектах, иметь публикации в отечественных научных журналах и (или) зарубежных реферируемых журналах, трудах национальных и международных конференций, симпозиумов по профилю, не менее одного раза в пять лет проходить повышение квалификации.

7.18. ООП магистратуры должна обеспечиваться учебно-методической документацией и материалами по всем учебным курсам, дисциплинам (модулям) ООП. Содержание каждой из таких учебных дисциплин (модулей) должно быть представлено в сети Интернет или локальной сети образовательного учреждения.

Каждый обучающийся должен быть обеспечен доступом к электронно-библиотечной системе, содержащей издания по основным изучаемым дисциплинам и сформированной по согласованию с правообладателями учебной и учебно-методической литературы.

При этом должна быть обеспечена возможность осуществления одновременного индивидуального доступа к такой системе не менее чем для 25 процентов обучающихся.

Библиотечный фонд должен быть укомплектован печатными и (или) электронными изданиями основной учебной и научной литературы по дисциплинам общенаучного и профессионального циклов, изданными за последние пять лет, из расчета не менее 25 экземпляров таких изданий на каждые 100 обучающихся.

Фонд дополнительной литературы помимо учебной должен включать официальные, справочно-библиографические и специализированные периодические издания в расчете 1-2 экземпляра на каждые 100 обучающихся.
Электронно-библиотечная система должна обеспечивать возможность индивидуального доступа для каждого обучающегося из любой точки, в которой имеется доступ к сети Интернет.

Оперативный обмен информацией с отечественными и зарубежными вузами и организациями должен осуществляться с соблюдением требований законодательства Российской Федерации об интеллектуальной собственности и международных договоров Российской Федерации в области интеллектуальной собственности. Для обучающихся должен быть обеспечен доступ к современным профессиональным базам данных, информационным справочным и поисковым системам.

7.19. Ученый совет высшего учебного заведения при введении ООП магистратуры утверждает общий бюджет реализации ООП.

Финансирование реализации ООП должно осуществляться в объеме не ниже установленных нормативов финансирования высшего учебного заведения².

7.20. Высшее учебное заведение, реализующее ООП магистратуры, должно располагать материально-технической базой, обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической и научно-исследовательской работы обучающихся, предусмотренных учебным планом вуза и соответствующей действующим санитарным и противопожарным правилам и нормам.

Минимально необходимый для реализации ООП магистратуры перечень материально-технического обеспечения включает в себя:

компьютерные классы, обеспечивающие выход в сеть Интернет и оснащенные современной вычислительной техникой, высокопроизводительными вычислительными системами и лицензионным программным обеспечением, как общим, так и специализированным;
лаборатории, оснащенные современным экспериментальным оборудованием для проведения комплексных испытаний холодильных и криогенных машин и установок, а так же систем жизнеобеспечения и их элементов и позволяющие изучать профилирующие дисциплины, в том числе автоматизированные системы научных исследований;
специализированные аудитории, оснащенные средствами визуализации результатов математического и компьютерного моделирования.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выходом в сеть Интернет в соответствии с объемом изучаемых дисциплин.
Вуз должен обеспечить 100 процентов доступность для студентов к сети Интернет.
Вуз должен быть обеспечен необходимым лицензионным программным обеспечением.

VIII. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ МАГИСТРАТУРЫ
8.1. Высшее учебное заведение обязано обеспечивать гарантию качества подготовки, в том числе путем:
разработки стратегии по обеспечению качества подготовки выпускников с привлечением представителей работодателей;
мониторинга, периодического рецензирования образовательных программ;
разработки объективных процедур оценки уровня знаний и умений обучающихся, компетенций выпускников;
об обеспечении компетентности преподавательского состава;
регулярном проведении самообследования по согласованным критериям для оценки своей деятельности (стратегии) и сопоставления с другими образовательными учреждениями с привлечением представителей работодателей;
информировании общественности о результатах своей деятельности, планах, инновациях.

Оценка качества освоения ООП магистратуры должна включать текущий контроль успеваемости, промежуточную аттестацию обучающихся и итоговую государственную аттестацию выпускников.

8.2. Конкретные формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по каждой дисциплине разрабатываются вузом самостоятельно и доводятся до сведения обучающихся в течение первого месяца обучения.

8.3. Для аттестации обучающихся на соответствие их персональных достижений поэтапным требованиям соответствующей ООП магистратуры (текущая и промежуточная аттестация) создаются фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить знания, умения и уровень приобретенных компетенций. Фонды оценочных средств разрабатываются и утверждаются вузом.

Фонды оценочных средств должны быть полными и адекватными отображениями требований ФГОС ВПО по данному направлению подготовки, соответствовать целям и задачам ООП магистратуры и её учебному плану. Они призваны обеспечивать оценку качества
общекультурных и профессиональных компетенций, приобретаемых выпускником.

При разработке оценочных средств для контроля качества изучения модулей, дисциплин, практик должны учитываться все виды связей между включенными в них знаниями, умениями, навыками, позволяющие установить качество сформированных у обучающихся компетенций по видам деятельности и степень общей готовности выпускников к профессиональной деятельности.

При проектировании оценочных средств необходимо предусматривать оценку способности обучающихся к творческой деятельности, их готовности вести поиск решения новых задач, связанных с недостаточностью конкретных специальных знаний и отсутствием общепринятых алгоритмов профессионального поведения.

Помимо индивидуальных оценок должны использоваться групповые и взаимооценки: рецензирование обучающимися работ друг друга; оппонирование обучающимися рефератов, проектов, выпускных квалификационных работ, исследовательских работ; экспертные оценки группами, состоящими из обучающихся, преподавателей и работодателей.

8.4. Обучающимся, представителям работодателей должна быть предоставлена возможность оценивания содержания, организации и качества учебного процесса в целом, а также работы отдельных преподавателей.

8.5. Вузом должны быть созданы условия для максимального приближения системы оценивания и контроля компетенций магистров к условиям их будущей профессиональной деятельности. С этой целью кроме преподавателей конкретной дисциплины в качестве внешних экспертов должны активно использоваться работодатели (представители заинтересованных предприятий), преподаватели, читающие смежные дисциплины.

ФГОС-03
8.6. Итоговая государственная аттестация направлена на установление соответствия уровня профессиональной подготовки выпускников требованиям ФГОС ВПО.

Итоговая государственная аттестация включает защиту выпускной квалификационной работы, а также государственный экзамен, устанавливаемый по решению ученого совета вуза.

8.7. Требования к содержанию, объему и структуре выпускной квалификационной работы определяются высшим учебным заведением.

Выпускная квалификационная работа в соответствии с ООП магистратуры выполняется в виде магистерской диссертации в период прохождения практики и выполнения научно-исследовательской работы и представляет собой самостоятельную и логически завершенную выпускную квалификационную работу, связанную с решением задач того вида (видов) деятельности, к которым готовится магистр (научно-исследовательской, включая расчетно-экспериментальную, научно-педагогической, производственно-технологической, проектно-конструкторской, организационно-управленческой, научно-инновационной, консультационно-экспертной).

Тематика выпускной квалификационной работы должна быть направлена на решение профессиональных задач - исследование теплофизических и механических процессов и явлений, машин, установок, агрегатов, оборудования, приборов и аппаратуры и их элементов и других объектов современной техники, различных отраслей промышленности, топливно-энергетического комплекса, транспорта и строительства, для которых проблемы и задачи холодильной, криогенной техника и систем жизнеобеспечения являются основными и актуальными, и которые для своего изучения и решения требуют разработки и применения математических и компьютерных моделей; разработка, применение и внедрение современных информационных технологий, наукоемких ФГОС-03
компьютерных технологий на основе передовых технологий и компьютерных технологий жизненного цикла изделий и продукции, расчетно-экспериментальных технологий, суперкомпьютерных технологий и технологий распределенных вычислений на основе высокопроизводительных кластерных систем, технологий виртуальной реальности, технологий быстрого прототипирования, производственных технологий (технологии создания машин и аппаратов холодной и криогенной техники и систем кондиционирования; охлаждения газов и разделения газовых смесей для получения промышленных и редких газов, технологий охлаждения и замораживания биологических объектов и пищевых продуктов), нанотехнологий; исследование и разработка новых перспективных, многофункциональных и озонобезопасных хладагентов холодильных установок, перспективных, многофункциональных и «интеллектуальных» конструктивных материалов, материалов с многоуровневой или иерархической структурой (порошковые, пористые и керамические материалы, композиционные материалы, включая слоистые, волокнистые, гранулированные и текстильные композиты с регулярной и хаотической микроструктурой, нанокомпозиты), материалов техники нового поколения, функционирующей в экстремальных условиях: при низких и сверхнизких температурах, в условиях сверхвысокого давления и вакуума и в космосе, в условиях статического, циклического, вибрационного, динамического и ударного нагружений, высокоскоростного деформирования, в условиях концентрации напряжений и деформаций, мало- и многоцикловой усталости, контактных взаимодействий и разрушений, различных типов изнашивания (абразивное, коррозионно-механическое, адгезионное и когезионное, усталостное, эрозионное, кавитационное.), а также в условиях механических, акустических, аэро- и гидродинамических, тепловых, электро-магнитных и радиационных внешних воздействий; проведение
экспериментов и анализ экспериментальной информации с
использованием современной вычислительной техники; поверочные
теплофизические, а так же расчёты на прочность, устойчивость,
выносливость, износостоякость; выработка практических рекомендаций
для проектировщиков низкотемпературных машин, приборов или
аппаратов; разработка нормативных методических и производственных
dокументов в области холодильной, криогенной техника и систем
жизнеобеспечения.

При выполнении выпускной квалификационной работы
обучающиеся должны показать свою способность и умение, опираясь на
полученные углубленные знания, умения и сформированные
общекультурные и профессиональные компетенции, самостоятельно
решать на современном уровне задачи своей профессиональной
деятельности, профессионально излагать специальную информацию,
научно аргументировать и защищать свою точку зрения.

8.8. Программа государственного экзамена разрабатывается вузами
самостоятельно. Для объективной оценки компетенций выпускника тема-
tика экзаменационных вопросов и заданий должна быть комплексной и
соответствовать избранным разделам из различных учебных циклов, фор-
mирующих конкретные компетенции.